Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 2, 2026
-
In the future, communication networks such as fifth-generation new radio (5G NR) and sixth-generation (6G) will require large data rates and capacities. As a result, mmWave and terahertz (THz) bands are being employed to meet these demands. Unfortunately, these high-frequency bands are susceptible to high path loss, necessitating the deployment of small cells. This, in turn, calls for the installation of a massive number of base stations to cover the whole area. The sheer number of cells and users in such a setup can lead to interruptions in calls when users switch cells, a process known as handover (HO). This has a negative effect on the quality of service (QoS) and the quality of experience (QoE). Therefore, this survey focuses on exploring and comparing artificial intelligence (AI)-based intelligent HO solutions that can optimize HO in 5G NR and 6G networks.more » « less
-
The extensive interest in sustainable water management reflects the extent to which the global water landscape has changed in the past twenty years, which is a natural development of changes in water resources and an increase in the level of imbalance between water supply and demand. In this paper, a simulation model based on system dynamics (SD) methodology was developed to aid sustainable water management efforts in a semi-arid region. Six policy scenarios were used to study, analyze, and assess water management trends in the Southeast region of New Mexico, USA. The modeling process included two phases: calibration (2000–2015) and future prediction (2016–2050). Several statistical criteria were applied to assess the developed model performance. The findings revealed that the simulated outputs were in excellent agreement with the historical data, indicating accurate model simulation. The SD model’s determination coefficients ranged from 0.9288 to 0.9936 and the index of agreement values ranged from 0.9397 to 0.9958. Findings for the business-as-usual scenario indicated that total water withdrawals and total population will continue to rise, whereas groundwater storage, agricultural consumptive water use, and total consumptive water use will decrease over the simulated period. Sensitivity analysis using Monte Carlo simulation indicated that cultivated irrigated land change is the most influential parameter affecting groundwater storage, water supply storage change (total withdrawals), agricultural consumptive water use, and total consumptive water use. The changes occurring in the agricultural cultivated area had a great influence on controlling the groundwater system. Overall, the results showed that our SD model has been successful in capturing the system’s dynamic behavior, and confirmed its capability in modeling water management issues for policy and decision makers under semi-arid conditions.more » « less
-
We investigate the role of reflection and glide symmetry in periodic lossless waveguides on the dispersion diagram and on the existence of various orders of exceptional points of degeneracy (EPDs). We use an equivalent circuit network to model each unit-cell of the guiding structure. Assuming that a coupled-mode waveguide supports N modes in each direction, we derive the following conclusions. When N is even, we show that a periodic guiding structure with reflection symmetry may exhibit EPDs of maximum order N . To obtain a degenerate band edge (DBE) with only two coupled guiding structures, reflection symmetry must be broken. For odd N,N+1 is the maximum EPD order that may be obtained, and an EPD of order N is not allowed. We present an example of three coupled microstrip transmission lines and show that breaking the reflection symmetry by introducing glide symmetry enables the occurrence of a stationary inflection point (SIP), also called frozen mode, which is an EPD of order three.more » « less
-
The first experimental demonstration of an oscillator based on a periodic, resonant microstrip circuit with a degenerate band edge (DBE) is presented. The DBE is a fourth-order exceptional degeneracy of the eigenmodes in a lossless periodic waveguide that is visible in the wavenumber-frequency dispersion diagram, and the periodic microstrip behaves as a frequency selective medium. The presence of the DBE condition and the associated DBE resonance allow for a stable, single-mode oscillation as well as stability with varying the load resistance.more » « less
-
An oscillator made of a periodic waveguide comprising of uniform lossless segments with discrete nonlinear gain and radiating resistive elements prefers to operate at exceptional point of degeneracy (EPD). The steady-state regime is an EPD with π phase shift between unit cells, for various choices of small signal gain of the nonlinear elements and number of unit cells. We demonstrated this fact by monitoring both current and voltage across each nonlinear gain element and finding its effective admittance at the oscillating frequency and checking the degeneracy of the eigenmodes at such point. The EPD studied here is very promising for many applications that incorporate discrete distributed coherent sources and radiation-loss elements. Operating in the vicinity of such special degeneracy conditions may lead to potential performance enhancement in the various microwave, THz and optical systems with distributed gain and radiation, paving the way for a new class of active integrated antenna arrays and radiating laser arrays.more » « less
-
null (Ed.)Recently, research on sixth-generation (6G) networks has gained significant interest. 6G is expected to enable a wide-range of applications that fifth-generation (5G) networks will not be able to serve reliably, such as tactile Internet. Additionally, 6G is expected to offer Terabits per second (Tbps) data rates, 10 times lower latency, and near 100% coverage, compared to 5G. Thus, 6G is expected to expand across all available spectrums including terahertz (THz) and optical frequency bands. In this manuscript, mixed-carrier communication (MCC) is investigated as a novel physical layer (PHY) design for 6G networks. The proposed MCC version in this study is based on visible light communication (VLC). MCC enables a unified transmission PHY design to connect devices with different complexities, simultaneously. The design trade-offs and the required signal-to-noise ratio (SNR) per individual modulation schemes embedded within MCC are investigated. The complexity analysis shows that a conventional optical OFDM receiver can capture the high-speed bit-stream embedded within MCC. For a forward error correction (FEC) bit-error-rate (BER) threshold of 3.8×10−3, MCC is optimized to maximize the spectral efficiency by embedding 2-beacon phase-shift keying (2-BnPSK) within an MCC envelope on top of 12 bits per beacon position modulation (BPM) symbol.more » « less
-
ABSTRACT: Convective quasi-equilibrium (QE) and weak temperature gradient (WTG) balances are frequently employed to study the tropical atmosphere. This study uses linearized equatorial beta-plane solutions to examine the relevant regimes for these balances. Wave solutions are characterized by moisture–temperature ratio (q–T ratio) and dominant thermodynamic balances. An empirically constrained precipitation closure assigns different sensitivities of convection to temperature («t) and moisture («q). Longwave equatorial Kelvin and Rossby waves tend toward the QE balance with q–T ratios of «t:«q that can be ;1–3. Departures from strict QE, essential to both precipitation and wave dynamics, grow with wavenumber. The propagating QE modes have reduced phase speeds because of the effective gross moist stability meff, with a further reduction when «t . 0. Moisture modes obeying the WTG balance and with large q–T ratios (.10) emerge in the shortwave regime; these modes exist with both Kelvin and Rossby wave meridional structures. In the y 50 case, long propagating gravity waves are absent and only emerge beyond a cutoff wavenumber. Two bifurcations in the wave solutions are identified and used to locate the spatial scales for QE–WTG transition and gravity wave emergence. These scales are governed by the competition between the convection and gravity wave adjustment times and are modulated by meff. Near-zero values ofmeff shift theQE–WTGtransition wavenumber toward zero. Continuous transitions replace the bifurcations when meff , 0 or moisture advection/WISHE mechanisms are included, but the wavenumber-dependent QE and WTG balances remain qualitatively unaltered. Rapidly decaying convective/gravity wave modes adjust to the slowly evolving QE/WTG state in the longwave/shortwave regimes, respectively.more » « less
An official website of the United States government

Full Text Available